

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM END EXAMINATIONS NOV - 2024

III B.SC MATHEMATICS: MATHEMATICAL SPECIAL FUNCTIONS-

TIME: 2 HRS

DATE& SESSION

12.11.24 & AN

REG NO

MAX MARKS

50

SECTION-I

Answer any THREE of the following questions. And attempt one question from Each section part Each question carries TEN marks. $3 \times 10 = 30 \text{ Marks}$

PART-A

- 1. When n is a positive integer, prove that $\Gamma\left(-n+\frac{1}{2}\right)=\frac{(-1)^n2^n\sqrt{\pi}}{1.3.5....(2n-1)}$.
- 2. State and prove the relationship between Beta and Gamma functions.
- 3. If the power series $\sum a_n x^n$ is such that $a_n \neq 0$ for all n and $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = \frac{1}{R}$ then $\sum a_n x^n$ is convergent for |x| < R and divergent for |x| > R.

PART-B

- 4. State and Prove generating function of the Hermit's polynomial.
- 5. Prove that $\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1}$.
- 6. Prove that $\sqrt{\frac{\pi x}{2}} J_{\frac{3}{2}}(x) = \frac{1}{x} \sin x \cos x.$

SECTION-II

Answer any FOUR of the following questions. Each question carries FIVE marks. $4 \times 5 = 20$ Marks

- 7. Prove that $\int_0^1 x^m (\log x)^n dx = \frac{(-1)^n n!}{(m+1)^{n+1}}$.
- 8. Show that $\Gamma\left(\frac{3}{2}-x\right)\Gamma\left(\frac{3}{2}+x\right)=\left(\frac{1}{4}-x^2\right)\pi\sec\pi x$, -1<2x<1.
- 9. Find the radius of the convergence of the series $\sum (-1)^n \frac{x^{2n+1}}{(2n+1)!}$.
- 10. Solve by power series method y'-y=0.
- 11. Find the first five terms in Hermit polynomials.
- 12. Prove that $\int_{-1}^{+1} x^2 P_{n+1}(x) P_{n-1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}$
- 13. When n is a positive integer, prove that $J_{-n}(x) = (-1)^n J_n(x)$.